๐Ÿ—๏ธ Well-Architected Framework Alignment

Ensuring migration strategies follow Azure WAF best practices


๐ŸŽฏ Understanding Well-Architected Framework (WAF)

The Azure Well-Architected Framework provides architectural guidance based on five key pillars. Both Rehost and Refactor strategies must align with these pillars to ensure successful, sustainable cloud solutions.

๐Ÿ›๏ธ The Five Pillars

---
title: Azure Well-Architected Framework Pillars
---
flowchart TB
    subgraph WAF [๐Ÿ—๏ธ Well-Architected Framework]
        A[๐Ÿ›ก๏ธ Security<br/>Protect against threats]
        B[๐Ÿ”„ Reliability<br/>Resilient and available]
        C[โšก Performance<br/>Efficient and scalable]
        D[๐Ÿ’ฐ Cost Optimization<br/>Maximize value]
        E[๐ŸŽฏ Operational Excellence<br/>Run and monitor]
    end
    
    subgraph Migration [๐Ÿ“ฆ Migration Strategies]
        F[๐Ÿ“ฆ Rehost Implementation]
        G[๐Ÿ”„ Refactor Implementation]
    end
    
    WAF --> Migration
    
    style A fill:#ffebee,stroke:#c62828
    style B fill:#e8f5e8,stroke:#388e3c
    style C fill:#e3f2fd,stroke:#1976d2
    style D fill:#fff3e0,stroke:#f57c00
    style E fill:#f3e5f5,stroke:#7b1fa2
    style Migration fill:#f1f8e9,stroke:#558b2f

๐Ÿ›ก๏ธ Security Pillar Implementation

๐Ÿ” Defense in Depth Strategy

Both migration strategies implement layered security:

---
title: Security Layers for Migration
---
flowchart TB
    subgraph Identity [๐Ÿ‘ค Identity & Access]
        A[๐Ÿ” Azure Active Directory]
        B[๐Ÿ‘ฅ Role-Based Access Control]
        C[๐Ÿ”‘ Privileged Identity Management]
    end
    
    subgraph Network [๐ŸŒ Network Security]
        D[๐Ÿšช Network Security Groups]
        E[๐Ÿ”ฅ Azure Firewall]
        F[๐Ÿ›ก๏ธ DDoS Protection]
    end
    
    subgraph App [๐Ÿ“ฑ Application Security]
        G[๐ŸŒ Web Application Firewall]
        H[๐Ÿ”’ SSL/TLS Encryption]
        I[๐Ÿ›ก๏ธ API Management Security]
    end
    
    subgraph Data [๐Ÿ—„๏ธ Data Protection]
        J[๐Ÿ” Encryption at Rest]
        K[๐Ÿ”’ Encryption in Transit]
        L[๐Ÿ”‘ Key Vault Management]
    end
    
    Identity --> Network --> App --> Data
    
    style Identity fill:#e3f2fd,stroke:#1976d2
    style Network fill:#e8f5e8,stroke:#388e3c
    style App fill:#fff3e0,stroke:#f57c00
    style Data fill:#ffebee,stroke:#c62828

๐Ÿ”’ Security by Migration Strategy

Security Aspect Rehost Approach Refactor Approach
๐Ÿ” Identity Azure AD Connect Azure AD B2C integration
๐ŸŒ Network NSGs, VPN Gateway App Gateway, Front Door
๐Ÿ“ฑ Application VM-level security WAF, API Management
๐Ÿ—„๏ธ Data Disk encryption TDE, Always Encrypted
๐Ÿ”‘ Secrets Key Vault basic Managed Identity access
๐Ÿ“Š Monitoring Security Center Advanced Threat Protection

โœ… Security Checklist

๐Ÿ“ฆ Rehost Security Requirements

  • ๐Ÿ” Azure AD integration configured
  • ๐ŸŒ Network segmentation implemented
  • ๐Ÿ’พ Disk encryption enabled
  • ๐Ÿ”‘ Key Vault for secrets management
  • ๐Ÿ“Š Security monitoring enabled
  • ๐Ÿ”„ Backup encryption configured
  • ๐Ÿ›ก๏ธ Antimalware protection active

๐Ÿ”„ Refactor Security Requirements

  • ๐Ÿ” Managed Identity for service authentication
  • ๐ŸŒ WAF protection for web applications
  • ๐Ÿ—ƒ๏ธ Database security features enabled
  • ๐Ÿ”’ API security with OAuth/OpenID
  • ๐Ÿ“Š Application security monitoring
  • ๐Ÿ” Container security if using containers
  • ๐Ÿ›ก๏ธ DevSecOps pipeline integration

๐Ÿ”„ Reliability Pillar Implementation

๐ŸŽฏ Availability and Resilience

---
title: Reliability Architecture Patterns
---
flowchart LR
    subgraph Single [๐ŸŽฏ Single Region]
        A[โš–๏ธ Load Balancer]
        B[๐Ÿ–ฅ๏ธ Multiple VMs/Instances]
        C[๐Ÿ—„๏ธ Replicated Storage]
    end
    
    subgraph Multi [๐ŸŒ Multi-Region]
        D[๐ŸŒ Traffic Manager]
        E[๐Ÿ  Primary Region]
        F[๐Ÿ”„ Secondary Region]
    end
    
    subgraph Backup [๐Ÿ’พ Backup & Recovery]
        G[๐Ÿ”„ Azure Backup]
        H[๐Ÿ”„ Site Recovery]
        I[๐Ÿ“Š Recovery Testing]
    end
    
    Single --> Multi
    Multi --> Backup
    
    style Single fill:#e8f5e8,stroke:#388e3c
    style Multi fill:#e3f2fd,stroke:#1976d2
    style Backup fill:#fff3e0,stroke:#f57c00

๐Ÿ“Š Reliability Targets by Strategy

Reliability Metric Rehost Target Refactor Target
โฐ Availability SLA 99.9% (VM SLA) 99.95% (PaaS SLA)
๐Ÿ”„ Recovery Time (RTO) 4-8 hours 1-2 hours
๐Ÿ’พ Recovery Point (RPO) 1 hour 15 minutes
๐ŸŒ Multi-region Manual failover Automated failover
๐Ÿ“Š Health monitoring Basic VM metrics Application-level health

๐Ÿ› ๏ธ Reliability Implementation

๐Ÿ“ฆ Rehost Reliability Features

Infrastructure Reliability:
โ”œโ”€โ”€ ๐Ÿ”„ Availability Sets for VM placement
โ”œโ”€โ”€ โš–๏ธ Load Balancer for traffic distribution
โ”œโ”€โ”€ ๐Ÿ’พ Azure Backup for data protection
โ”œโ”€โ”€ ๐Ÿ”„ Azure Site Recovery for DR
โ”œโ”€โ”€ ๐Ÿ“Š Azure Monitor for health checks
โ””โ”€โ”€ ๐Ÿšจ Alert rules for proactive monitoring

๐Ÿ”„ Refactor Reliability Features

Platform Reliability:
โ”œโ”€โ”€ ๐ŸŒ App Service multi-instance deployment
โ”œโ”€โ”€ ๐Ÿ”„ Auto-scaling based on demand
โ”œโ”€โ”€ ๐Ÿ—ƒ๏ธ Database automatic failover
โ”œโ”€โ”€ ๐ŸŒ Multi-region deployment capability
โ”œโ”€โ”€ ๐Ÿ“Š Application Insights health monitoring
โ””โ”€โ”€ ๐Ÿ”„ Blue-green deployment strategies

โšก Performance Efficiency Pillar

๐Ÿš€ Performance Optimization Strategy

---
title: Performance Optimization Approach
---
flowchart TD
    subgraph Baseline [๐Ÿ“Š Performance Baseline]
        A[๐Ÿ“ˆ Current Metrics]
        B[๐ŸŽฏ Target Metrics]
        C[๐Ÿ“Š Benchmarking]
    end
    
    subgraph Optimize [โšก Optimization Areas]
        D[๐Ÿ’ป Compute Optimization]
        E[๐Ÿ’พ Storage Optimization]
        F[๐ŸŒ Network Optimization]
        G[๐Ÿ—„๏ธ Database Optimization]
    end
    
    subgraph Monitor [๐Ÿ“Š Continuous Monitoring]
        H[๐Ÿ“ˆ Performance Metrics]
        I[๐Ÿšจ Alert Thresholds]
        J[๐Ÿ”„ Auto-scaling Rules]
    end
    
    Baseline --> Optimize --> Monitor
    
    style Baseline fill:#e3f2fd,stroke:#1976d2
    style Optimize fill:#e8f5e8,stroke:#388e3c
    style Monitor fill:#fff3e0,stroke:#f57c00

๐Ÿ“ˆ Performance Comparison

Performance Area On-Premises Baseline Rehost Performance Refactor Performance
๐Ÿš€ Response Time 500ms 450ms (10% better) 300ms (40% better)
๐Ÿ“Š Throughput 1000 req/min 1200 req/min 2500 req/min
๐Ÿ’พ Storage IOPS 1000 IOPS 3000 IOPS (Premium) Unlimited (managed)
๐ŸŒ Global Latency N/A VPN dependent CDN optimized
๐Ÿ“ˆ Scalability Manual Manual VM scaling Auto-scaling

๐ŸŽฏ Performance Best Practices

๐Ÿ“ฆ Rehost Performance Optimization

  • ๐Ÿ–ฅ๏ธ Right-size VMs based on actual usage patterns
  • ๐Ÿ’พ Use Premium SSD for performance-critical workloads
  • ๐ŸŒ Enable accelerated networking for network-intensive apps
  • ๐Ÿ“Š Implement caching with Azure Cache for Redis
  • โš–๏ธ Configure load balancing for traffic distribution

๐Ÿ”„ Refactor Performance Benefits

  • ๐Ÿ”„ Auto-scaling responds to demand automatically
  • ๐ŸŒ CDN integration reduces global latency
  • ๐Ÿ—ƒ๏ธ Managed database optimization and tuning
  • ๐Ÿ“Š Application-level monitoring for bottleneck identification
  • ๐Ÿš€ Serverless compute for event-driven workloads

๐Ÿ’ฐ Cost Optimization Pillar

๐Ÿ“Š Cost Management Strategy

---
title: Cost Optimization Framework
---
flowchart LR
    subgraph Planning [๐Ÿ“‹ Cost Planning]
        A[๐Ÿ’ฐ Budget Setting]
        B[๐Ÿ“Š Cost Forecasting]
        C[๐ŸŽฏ Cost Allocation]
    end
    
    subgraph Monitoring [๐Ÿ“ˆ Cost Monitoring]
        D[๐Ÿ“Š Usage Tracking]
        E[๐Ÿšจ Budget Alerts]
        F[๐Ÿ“ˆ Cost Analysis]
    end
    
    subgraph Optimization [๐Ÿ”ง Cost Optimization]
        G[๐Ÿท๏ธ Reserved Instances]
        H[๐Ÿ“Š Right-sizing]
        I[โฐ Resource Scheduling]
        J[๐Ÿ—„๏ธ Storage Optimization]
    end
    
    Planning --> Monitoring --> Optimization
    
    style Planning fill:#e3f2fd,stroke:#1976d2
    style Monitoring fill:#e8f5e8,stroke:#388e3c
    style Optimization fill:#fff3e0,stroke:#f57c00

๐Ÿ’ต Cost Comparison Analysis

Cost Category On-Premises Annual Rehost Annual Refactor Annual
๐Ÿ–ฅ๏ธ Compute $120,000 $80,000 $50,000
๐Ÿ’พ Storage $30,000 $25,000 $15,000
๐ŸŒ Network $20,000 $15,000 $10,000
๐Ÿ‘ฅ Operations $80,000 $60,000 $30,000
๐Ÿ›ก๏ธ Security $25,000 $15,000 $10,000
๐Ÿ“Š Total $275,000 $195,000 $115,000
๐Ÿ’ฐ Savings Baseline 29% savings 58% savings

๐ŸŽฏ Cost Optimization Strategies

๐Ÿ“ฆ Rehost Cost Optimization

Immediate Savings:
โ”œโ”€โ”€ ๐Ÿท๏ธ Azure Reserved Instances (30-70% savings)
โ”œโ”€โ”€ ๐Ÿ“Š VM right-sizing based on metrics
โ”œโ”€โ”€ โฐ Auto-shutdown for dev/test environments
โ”œโ”€โ”€ ๐Ÿ’พ Storage tier optimization (hot/cool/archive)
โ”œโ”€โ”€ ๐ŸŒ Bandwidth optimization
โ””โ”€โ”€ ๐Ÿ”„ Backup policy optimization

๐Ÿ”„ Refactor Cost Benefits

Long-term Savings:
โ”œโ”€โ”€ ๐ŸŒ PaaS pricing models (pay-per-use)
โ”œโ”€โ”€ ๐Ÿ”„ Auto-scaling reduces idle costs
โ”œโ”€โ”€ ๐Ÿ› ๏ธ Reduced operational overhead
โ”œโ”€โ”€ ๐Ÿ“Š Managed service efficiency
โ”œโ”€โ”€ ๐Ÿš€ Serverless compute for sporadic workloads
โ””โ”€โ”€ ๐ŸŒ Global optimization through CDN

๐ŸŽฏ Operational Excellence Pillar

๐Ÿ› ๏ธ Operations Management

---
title: Operational Excellence Framework
---
flowchart TB
    subgraph DevOps [๐Ÿ”„ DevOps Practices]
        A[๐Ÿ“ฆ CI/CD Pipelines]
        B[๐Ÿงช Automated Testing]
        C[๐Ÿ“Š Infrastructure as Code]
    end
    
    subgraph Monitoring [๐Ÿ“Š Monitoring & Alerting]
        D[๐Ÿ“ˆ Application Monitoring]
        E[๐Ÿ–ฅ๏ธ Infrastructure Monitoring]
        F[๐Ÿšจ Intelligent Alerting]
    end
    
    subgraph Governance [โš–๏ธ Governance & Compliance]
        G[๐Ÿ“‹ Policy Enforcement]
        H[๐Ÿท๏ธ Resource Tagging]
        I[๐Ÿ“Š Compliance Reporting]
    end
    
    DevOps --> Monitoring --> Governance
    
    style DevOps fill:#e8f5e8,stroke:#388e3c
    style Monitoring fill:#e3f2fd,stroke:#1976d2
    style Governance fill:#f3e5f5,stroke:#7b1fa2

๐Ÿ“Š Operational Maturity by Strategy

Operational Area Rehost Maturity Refactor Maturity
๐Ÿ”„ Deployment Manual/scripted Fully automated CI/CD
๐Ÿ“Š Monitoring Infrastructure-focused Application-aware
๐Ÿšจ Alerting Reactive Predictive analytics
๐Ÿ› ๏ธ Maintenance Manual patching Automated updates
๐Ÿ“‹ Documentation Traditional docs Living documentation
๐Ÿงช Testing Manual testing Automated test suites

โœ… Operational Excellence Checklist

๐Ÿ“ฆ Rehost Operations

  • ๐Ÿ”„ Backup automation configured and tested
  • ๐Ÿ“Š Monitoring dashboards for infrastructure
  • ๐Ÿšจ Alert rules for critical thresholds
  • ๐Ÿ› ๏ธ Patch management strategy implemented
  • ๐Ÿ“‹ Runbooks for common operations
  • ๐Ÿงช Disaster recovery testing scheduled

๐Ÿ”„ Refactor Operations

  • ๐Ÿ”„ CI/CD pipelines for automated deployment
  • ๐Ÿ“Š Application Insights comprehensive monitoring
  • ๐Ÿšจ Smart alerting with ML-based anomaly detection
  • ๐Ÿ› ๏ธ Auto-scaling rules and policies
  • ๐Ÿ“‹ Infrastructure as Code for repeatability
  • ๐Ÿงช Blue-green deployments for zero-downtime

๐Ÿ“ˆ WAF Assessment & Scoring

๐ŸŽฏ WAF Review Process

---
title: Well-Architected Review Process
---
flowchart LR
    A[๐Ÿ“‹ Initial Assessment] --> B[๐Ÿ” Pillar Review]
    B --> C[๐Ÿ“Š Gap Analysis]
    C --> D[๐ŸŽฏ Recommendations]
    D --> E[๐Ÿ“ˆ Implementation]
    E --> F[๐Ÿ”„ Continuous Review]
    
    style A fill:#e3f2fd,stroke:#1976d2
    style B fill:#e8f5e8,stroke:#388e3c
    style C fill:#fff3e0,stroke:#f57c00
    style D fill:#f3e5f5,stroke:#7b1fa2
    style E fill:#ffebee,stroke:#c62828
    style F fill:#f1f8e9,stroke:#558b2f

๐Ÿ“Š WAF Scoring Matrix

Pillar Weight Rehost Score Refactor Score
๐Ÿ›ก๏ธ Security 25% 7/10 9/10
๐Ÿ”„ Reliability 20% 6/10 8/10
โšก Performance 20% 6/10 9/10
๐Ÿ’ฐ Cost Optimization 20% 8/10 9/10
๐ŸŽฏ Operational Excellence 15% 5/10 8/10
๐Ÿ“Š Overall Score 100% 6.4/10 8.6/10

๐ŸŽฏ Improvement Recommendations

๐Ÿ“ฆ Rehost WAF Improvements

Priority Improvements:
โ”œโ”€โ”€ ๐ŸŽฏ Implement automated deployment processes
โ”œโ”€โ”€ ๐Ÿ“Š Enhance application-level monitoring
โ”œโ”€โ”€ ๐Ÿ”„ Add auto-scaling capabilities
โ”œโ”€โ”€ ๐Ÿ›ก๏ธ Strengthen identity management
โ””โ”€โ”€ ๐Ÿงช Implement automated testing

๐Ÿ”„ Refactor WAF Excellence

Advanced Optimizations:
โ”œโ”€โ”€ ๐ŸŒ Multi-region deployment strategy
โ”œโ”€โ”€ ๐Ÿค– AI-powered monitoring and alerting
โ”œโ”€โ”€ ๐Ÿ” Zero-trust security model
โ”œโ”€โ”€ ๐Ÿ“Š Advanced cost optimization algorithms
โ””โ”€โ”€ ๐Ÿš€ Chaos engineering practices

๐ŸŽฏ Key Takeaways

  • ๐Ÿ—๏ธ WAF provides technical excellence framework for both strategies
  • ๐Ÿ“ฆ Rehost achieves good baseline across all pillars
  • ๐Ÿ”„ Refactor enables higher WAF scores through cloud-native features
  • ๐Ÿ“Š Continuous assessment ensures ongoing optimization
  • ๐ŸŽฏ Both strategies can achieve WAF compliance with proper implementation
  • ๐Ÿ“ˆ Success measurement should include WAF scoring

๐Ÿ“– Next Steps: