Module 5: Edge RAG Concepts
Overview
Explore Retrieval-Augmented Generation (RAG) fundamentals and learn how to deploy AI at the edge for sovereign environments.
Module Content
📚 Main Content:
- Edge RAG Concepts - RAG fundamentals, edge deployment benefits, customer scenarios
 
Deep Dive Topics:
- RAG Fundamentals - Embeddings, vector databases, LLM limitations
 - Edge RAG Architecture - Local LLM deployment, ingestion pipeline, query processing
 - Edge RAG Use Cases - Industry scenarios, best practices, ROI
 
✅ Assessment:
- Knowledge Check - 15 questions testing RAG concepts and implementation
 
Key Concepts
- RAG architecture and components
 - Vector databases and embeddings
 - Local LLM deployment and inference
 - Data sovereignty for AI workloads
 - Edge computing benefits
 - Industry-specific use cases
 
Duration: 2-2.5 hours