Module 5: Edge RAG Concepts
Overview
Explore Retrieval-Augmented Generation (RAG) fundamentals and learn how to deploy AI at the edge for sovereign environments.
Module Content
📚 Main Content:
- Edge RAG Concepts - RAG fundamentals, edge deployment benefits, customer scenarios
Deep Dive Topics:
- RAG Fundamentals - Embeddings, vector databases, LLM limitations
- Edge RAG Architecture - Local LLM deployment, ingestion pipeline, query processing
- Edge RAG Use Cases - Industry scenarios, best practices, ROI
✅ Assessment:
- Knowledge Check - 15 questions testing RAG concepts and implementation
Key Concepts
- RAG architecture and components
- Vector databases and embeddings
- Local LLM deployment and inference
- Data sovereignty for AI workloads
- Edge computing benefits
- Industry-specific use cases
Duration: 30-40 minutes