MLOps for Edge RAG Systems
Overview
View Diagram: MLOps Pipeline for Edge RAG
Figure 1: Complete MLOps pipeline for Edge RAG model lifecycle management
Implement machine learning operations for managing model lifecycle in production edge RAG deployments.
MLOps Pipeline
graph LR
subgraph Dev[Development]
Data[Data Collection] --> Train[Model Training]
Train --> Validate[Validation]
Validate --> Test[Testing]
end
subgraph Deploy[Deployment]
Test --> Package[Edge Packaging]
Package --> Version[Version Control]
Version --> Rollout[Staged Rollout]
end
subgraph Monitor[Monitoring]
Rollout --> Perf[Performance Tracking]
Perf --> Drift[Data Drift Detection]
Drift --> Quality[Quality Metrics]
end
subgraph Retrain[Retraining]
Quality --> Trigger{Retrain?}
Trigger -->|Yes| Auto[Auto Retrain]
Trigger -->|No| Monitor
Auto --> Gates[Validation Gates]
Gates --> Approve[Approval]
Approve --> Data
end
style Dev fill:#E8F4FD,stroke:#0078D4,stroke-width:2px,color:#000
style Deploy fill:#FFF4E6,stroke:#FF8C00,stroke-width:2px,color:#000
style Monitor fill:#F3E8FF,stroke:#7B3FF2,stroke-width:2px,color:#000
style Retrain fill:#D4E9D7,stroke:#107C10,stroke-width:2px,color:#000
Model Management
Training
- Data collection
- Model training
- Validation
- Testing
Deployment
- Edge packaging
- Version control
- Staged rollout
- Monitoring
Monitoring
- Performance tracking
- Data drift detection
- Model quality metrics
- User analytics
Retraining
- Trigger conditions
- Automatic retraining
- Validation gates
- Deployment approval
Operational Excellence
- Automated pipelines
- Governance controls
- Audit trails
- Disaster recovery
| See also: Architecture | Lab |