MLOps for Edge RAG Systems

Overview

View Diagram: MLOps Pipeline for Edge RAG

MLOps Pipeline showing development, training, deployment, monitoring, and retraining lifecycle Figure 1: Complete MLOps pipeline for Edge RAG model lifecycle management

Implement machine learning operations for managing model lifecycle in production edge RAG deployments.


MLOps Pipeline

graph LR
    subgraph Dev[Development]
        Data[Data Collection] --> Train[Model Training]
        Train --> Validate[Validation]
        Validate --> Test[Testing]
    end

    subgraph Deploy[Deployment]
        Test --> Package[Edge Packaging]
        Package --> Version[Version Control]
        Version --> Rollout[Staged Rollout]
    end

    subgraph Monitor[Monitoring]
        Rollout --> Perf[Performance Tracking]
        Perf --> Drift[Data Drift Detection]
        Drift --> Quality[Quality Metrics]
    end

    subgraph Retrain[Retraining]
        Quality --> Trigger{Retrain?}
        Trigger -->|Yes| Auto[Auto Retrain]
        Trigger -->|No| Monitor
        Auto --> Gates[Validation Gates]
        Gates --> Approve[Approval]
        Approve --> Data
    end

    style Dev fill:#E8F4FD,stroke:#0078D4,stroke-width:2px,color:#000
    style Deploy fill:#FFF4E6,stroke:#FF8C00,stroke-width:2px,color:#000
    style Monitor fill:#F3E8FF,stroke:#7B3FF2,stroke-width:2px,color:#000
    style Retrain fill:#D4E9D7,stroke:#107C10,stroke-width:2px,color:#000

Model Management

Training

  • Data collection
  • Model training
  • Validation
  • Testing

Deployment

  • Edge packaging
  • Version control
  • Staged rollout
  • Monitoring

Monitoring

  • Performance tracking
  • Data drift detection
  • Model quality metrics
  • User analytics

Retraining

  • Trigger conditions
  • Automatic retraining
  • Validation gates
  • Deployment approval

Operational Excellence

  • Automated pipelines
  • Governance controls
  • Audit trails
  • Disaster recovery

See also: Architecture Lab